Perforce 2011.1
Introducing Perforce

October 2011

This manual copyright 2005-2011 Perforce Software.
All rights reserved.

Perforce software and documentation is available from http: //www.perforce. com. You may download and
use Perforce programs, but you may not sell or redistribute them. You may download, print, copy, edit, and
redistribute the documentation, but you may not sell it, or sell any documentation derived from it. You may not
modify or attempt to reverse engineer the programs.

Perforce programs and documents are available from our Web site as is. No warranty or support is provided.
Warranties and support, along with higher capacity servers, are sold by Perforce Software.

Perforce Software assumes no responsibility or liability for any errors or inaccuracies that may appear in this book.
By downloading and using our programs and documents you agree to these terms.

Perforce and Inter-File Branching are trademarks of Perforce Software. Perforce software includes software
developed by the University of California, Berkeley and its contributors.

All other brands or product names are trademarks or registered trademarks of their respective companies or
organizations.

http://www.perforce.com

Table of Contents

Introducing Perforce.........ccccoevviiiiiiiiiiiiiiiiiines 5
How Perforce WOTKScooviiiiiiiiiii s 5
The Perforce SEIver ... 5
Perforce client programscocueueiimicieiiiicicieeecie e 6
Connecting t0 @ SEIVET........ccccoueveieieieieiiiciicc 7
Mapping files in the depot to your client workspace.........c.cccccecevuneee 7
Other configuration OptioNns..........ccccevuveeviieirrvinirrrccrr e 8
Working in Perforce..........cooiiiiiiiiiiiiiiciccccccccccce e 9
Getting files from the SeIVer ..., 9
Syncing your Workspace...........ccccuicieieiiccie 9
Referring to files in Perforce ... 10
Perforce SYNtaxcccccvviviiiiiiniiiiiiiicncn s 10
Using wildcards in VIEWS.........ccccciiiiiiiiiiiiicccccncceecccnenee 11
Referring to specific revisions of filescccccovvvvvnrrnnnnnnncnes 11
Perforce syntax and the status bar..........c.cccoooooii, 12
What file types are supported? ... 12
Working wWith filesooooiiii 13
Using changelistscccccciiiiiiiiiiiiniiiiiiiincsccnsens 13
How changelist numbers Work.........c.cccccceeiiiiiiiiniciiccccee 13
Editing filesc.coviviiiiiiiiiccrcceereee s 14
Adding new files..........cccoviiiiiiiiii 14
Deleting filescocurieiiiiiieiiicce 14
Discarding unwanted changes...........ccccccovvvvninnnnnnnninne, 14
Checking in files........ccccceuiiiiiiiiiiiiiiiiiiis 15
Resolving CONfLCESc.cueveiiiiiiiiiiiiciciciccccccccce s 15
Working concurrently........o.ccooviiiiiiiii 16
Comparing files........ccooiirieiiicec 17
Reviewing change histories of individual files.............cccccooeernnnin. 17
Reviewing change histories of groups of filesc.c.cocooeiiennnnn. 18
Perforce syntax and the status bar.........ccocooooeiiii, 18
Codeline Management...........ccccuceeueucucucucueeieieneeeieeeeeneeenenenenenesenenenes 18
Branching Basics..........cceuiiiiiiieiiiiic 19
Creating a codeline..........cooouiiiiiiiiiiiii 19
Propagating changes between codelinesc..ccooceviiiiiiiiiiiicinne, 21
Resolving differences between codelinescccccceuiiiiiicciiiiicnnns 22

Perforce 2011.1 Introducing Perforce

Table of Contents

Duplicating complex branch structures...........ccoeeeeiiieniniiiinnnn, 22
Tracking change history between codelines...........cccccoeiiiiiinninns 23
USING SHIEAIMSvvviiiicictctcietcictccit e 24
Setting up the structure ..o, 25
Stream tyPeS.....cvvviviiiiiiiiiii e 26
SHEAM VIEWS ..ot 26
Populating the streams............ccceueiiiiiiiiicee 27
Propagating change ..o 27
To learn more about branching..............cccoooiii 27
INEXt SEEPS ..o 28
Work and defect trackingcccceeeerviinnniiirrcccnreeeeceees 28
Tagging files With labels ..., 28
Editors and merge tools.........ccooueviiiiieioiiiiccc e 28
Protections and permissions.........ccccoceueeiueieieiiecicieieice e 29
Users and LICENSES..........cccouiiiiiiiiiiiiiiiccna 29
Where to learn more about Perforce..........cccccovvvnvnninnnnnninccnes 29

4 Perforce 2011.1 Introducing Perforce

Introducing Perforce

How Perforce Works

Perforce is a Software Configuration Management (SCM) system based on a client/server
architecture. Users of Perforce client programs connect to a Perforce server and use
Perforce client programs to transfer files between the server’s file repository and
individual client workstations.

P4 %ﬂﬂ FHE==TrT ﬂﬂ% P4Win
— =
O E Perforce E [[— u
_ Server _
P4V %ﬂﬂ ﬂﬂ% IDE
— —
| —) — E E o | —

This document assumes that your Perforce server is already installed, configured and
running. To set up a Perforce server, see the System Administrator’s Guide.

The Perforce Server

The Perforce server manages the master file repository, or depot. There can be more than
one depot per server. The depots contain every revision of every file under Perforce
control. Perforce organizes files in depots into directory trees, like a large hard drive. Files
in a depot are referred to as depot files or versioned files. The server maintains a database to
track change logs, user permissions, and which users have which files checked out at any
time. The information stored in this database is referred to as metadata.

|| versioned files ||

- - - -
OO Od I o ol
' o o o I o e el o e e I o e el |
depoti depot2

Perforce 2011.1 Introducing Perforce 5

How Perforce Works

Perforce servers use native operating system capabilities to manage the database and the
versioned files, and require no dedicated filesystems or volumes.

Perforce client programs

You use Perforce client programs to communicate with the Perforce server. Perforce client
programs enable you to check files in and out, manage conflicts, create development
branches, track bugs and change requests, and more. Perforce client programs include:

P4, the Perforce Command-Line Client, for all platforms
P4V, the Perforce Visual Client, for Mac OS X, UNIX, Linux, and Windows
P4Web, the Perforce Web Client, a browser-based client

e Integrations, or plug-ins, that work with commercial IDEs and productivity software

Under Perforce, you never work directly on files in the depot. Instead, you use a Perforce
client program to manage a specially-designated area of your local workstation called a
client workspace. A client workspace contains a local copy of a portion of the depot.

Perforce Server = Client Workstation
= mf:
T | ===
Client
Workspace
]
. M
Depot =&]]
nENEEE |5
'/

Local drive

When you retrieve files into a client workspace, your Perforce client program requests the
files from the Perforce server. To keep network traffic to a minimum, the Perforce server
keeps track of what files you (and other users) have retrieved. Perforce client programs do
not require a persistent connection to the Perforce server.

6 Perforce 2011.1 Introducing Perforce

How Perforce Works

To use Perforce, you must set up your Perforce client program to connect to your
organization’s Perforce server, tell your client program where your client workspace is
located on your local hard drive, and tell your client program what files from the depot
you plan to work with.

Connecting to a server

To work with Perforce, you must connect to a Perforce server. Your Perforce client
program communicates with Perforce servers over a TCP/IP connection. Each Perforce
client program needs to know the address and port of the Perforce server with which it
communicates.

The address and port are stored in the P4PORT environment variable; depending on the
Perforce client you are using, the process of configuring this variable is referred to as
“setting your port”, or “connecting to the server”.

]
—]
—— i
Perforce Server Port Setting ===1]=
IP address: 192.168.0.10 P4PORT=192.168.0.10:1666
machine name: p4dserv P4PORT=p4dserv:1666

listening on: port 1666

The documentation and the online help for your client program contain information on
how to set your port. If you don’t know the port setting used for connecting to your
organization’s Perforce server, ask your Perforce administrator.

Mapping files in the depot to your client workspace

Perforce client programs manage files in a designated area of your local disk, called your
client workspace. Your client workspace is where you will be doing most of your work. You
can have more than one client workspace, even on the same computer. The top level
directory of any client workspace is called the client workspace root.

To control where the depot files appear under your client workspace root, you must map
the files and directories on the Perforce server to corresponding areas of your local hard
drive. These mappings constitute your client workspace view.

Client workspace views:
¢ Determine which files in the depot can appear in a client workspace.

* Map files in the depot to files in the client workspace.

Perforce 2011.1 Introducing Perforce 7

How Perforce Works

Client workspace views consist of one or more lines, or mappings. Each line in your
workspace view has two sides: a “depot side” that designates a subset of files within the
depot and a “client side” that controls where the files specified on the depot side are
located under your client workspace root.

= I
Client side
] =
o 0 -] -
/|| OO0 O &/ = O
O] NEOE DEEEEE g5
Depot side]

Creating a client workspace view doesn’t transfer any files from the server to your
computer. The view only sets up the mapping that controls the relationship between the
depot and your client workspace when files are transferred.

To learn more about how to set up the mappings that define your client workspace, see
the documentation and the online help for your Perforce client program.

Other configuration options

Other options for your Perforce client enable you to control the default behavior of
various operations within Perforce. For instance, you can control carriage return/linefeed
translation for cross-platform development, or select a preferred text editor or merge
utility for use within Perforce. To learn more about these and other options, see the
documentation for your particular Perforce client program.

8 Perforce 2011.1 Introducing Perforce

Working in Perforce

Working in Perforce

Getting files from the server

The Perforce server manages the depot, an archive of every version of every file in the
system. Your client workspace has a client workspace view that maps a subset of the
depot’s files to an area of your computer.

To populate your client workspace with the depot files, you must retrieve them from the
server. In Perforce, updating your workspace with files from the server is often referred to
as syncing your workspace. Other systems call this “refreshing”, “getting the tip revision”,
or just “getting files”.

Syncing your workspace

When you sync your workspace, your Perforce client program uses your client workspace
view to map files in the depot to files in your client workspace, compares the result
against the contents of your client workspace, and then adds, updates, or deletes files in
your workspace as needed to bring your workspace contents in sync with the depot.

Syncing your workspace retrieves a copy of the latest (“head”) revision of each file. (Other
SCM systems might refer to this as the “tip” revision.)

(workspace sync request)

E
]]

il e 0 - =
N o o OB|E & O
=) NEEE DEaEudE 5

depot files depotfiles][]
transferred in workspace

Perforce client programs manage file permissions in your workspace. By default, files
synced to your workspace are read-only, and become writable when you check them out
for editing.

Perforce client programs also support options that enable you to retrieve earlier revisions
of files, or the revisions of files stored as of specified points in time, or sets of revisions
that other users have tagged, or labeled with a user-defined identifying label.

Perforce 2011.1 Introducing Perforce 9

Working in Perforce

Referring to files in Perforce

Perforce organizes files in the depot using directory hierarchies, like a large hard drive.
Perforce client programs use a set of rules that define the specification of files in the depot
and in your workspace. Whether you are setting up the mapping (the client workspace
view) between the depot and your workspace, loading your workspace with files from the
depot, or checking files in or out, these rules for referring to files are common across all
operating systems.

Perforce syntax

When you refer to files in Perforce, you can specify files relative to a client workspace root
(“client syntax”), or to the top of the depot tree (“depot syntax”), or by absolute and or
relative paths on your local file system (“local syntax”).

Files specified in client syntax or depot syntax always begin with two slashes (//),
followed by the client workspace or depot name, and the full pathname of the file, relative
to the client workspace root or top of the depot tree. Path components in client and depot
syntax are always separated by forward slashes (/), regardless of the component
separator used by the local operating system.

Syntax Example

Depot syntax //depot/main/src/file.c

Client syntax //myworkspace/module/file.c

Local syntax C:\Projects\working\module\file.c

When mapping depot files to the local hard drive, the client workspace name is an alias
for the client workspace root.

Workspace: myworkspace
Root: ' C:\Projects\working\
View: //depot/main/src/... //myworkspace/module/...
Location: C:\Projects\working\module\file.c
For example, if the client workspace is named myworkspace, and the workspace root is

C:\Projects\working, then the mapping specified by the view
//depot/main/src/... //myworkspace/module/...

maps the depot file //depot /main/src/file. ¢ into the client workspace as
C:\Projects\working\module\file.c.

10

Perforce 2011.1 Introducing Perforce

Working in Perforce

Using wildcards in views

You can use these wildcards when configuring workspace views in Perforce.

Wildcard Meaning Example

* Matches all characters /src/*.c matches /src/file.c and
except slashes within one /src/file2.c,butnot /src/lib/file.c
directory.

Matches all files under the /src/ ... matches all files and all
current working directory subdirectories in and under /src
and all subdirectories.

%$%1 - %%9 DPositional specifiers that Mapping /%%1/%%2/...t0 /%%2/%%1/ . ..
replace portions of filenames maps /web/images/file.gif to
in views. /images/web/file.gif

These wildcards are also used when specifying files in the Command-Line Client. For
more about Perforce syntax and wildcards, see the Command Reference.

Referring to specific revisions of files

Perforce uses the # character to denote file revisions. File revisions in Perforce are
sequentially-increasing integers, beginning from #1 for the first revision, and so on. The
most recent revision of a file is the highest-numbered revision of that file on the server,
and is called the head revision. The revision you last synced to your workspace is called the
have revision. The zeroth revision of a file is called the null revision, and contains no data.

When you work in Perforce, development branches (or codelines) are represented as
directory paths. Files in different codelines have their own set of revision numbers,
starting at revision #1 and increasing upwards. The ancestry of files in different codelines
is preserved in integration records. To learn more about branching in Perforce, see
“Codeline Management” on page 18.

The indicator file.c#3/4 shows that you currently have revision #3 of file.c synced to
your workspace, and that the most recent revision of file.c is #4. In contrast to other
SCM systems, Perforce does not use perturbed version numbers (for instance, “revision
1.2.3 of file.c”) to denote revisions of files in different development branches.

Syntax Refers to Remarks
file.c#3 The third revision of file.c “Sync to the third revision of
file.c”.
file.c#head The most recent revision of To get the latest versions of files from
file.c stored on the server; this the depot, you sync your workspace to
is the head revision. the head revision.

Perforce 2011.1 Introducing Perforce 11

Working in Perforce

Syntax Refers to Remarks
file.c#have The revision of file.c last When you discard changes to a file,
synced to your workspace; your Perforce client program reverts
this is the have revision. the copy of the file in your
workspace to the have revision.
file.c#none The nonexistent, or null When you use a Perforce client
file.c#0 revision, of file.c. option to remove files from your

workspace, you are actually syncing
the revision of the file in your
workspace to the null revision.

Perforce syntax and the status bar

The syntax for the head, have, and null revisions (#head, #have, and #none) is used in the
Command Line Client and in the status window of graphical client programs. See the P4
User’s Guide for details.

What file types are supported?

Perforce file types include six base file types.
e text files,

® binary files,

¢ native apple files on the Macintosh,

® Mac resource forks,

¢ symbolic links (symlinks),

® unicode and utf1ise files.

By default, when anyone adds a file to the depot, Perforce attempts to determine the type
of the file automatically. You can change a file’s type by opening it for edit as the new file
type. If the file is already open for edit, you can reopen it as the different file type.

The six base file types can have modifiers (such as +w, +x, +k, and others) applied that
control such things as locking behavior, file permissions within a client workspace, or
how revisions are stored on the server. The Command Reference contains a complete list of
file types and applicable modifiers.

12

Perforce 2011.1 Introducing Perforce

Working in Perforce

Working with files

The changelist is the basic unit of work in Perforce. The basic file editing operations
common to all SCM systems (such as editing files, adding files, deleting files, backing out
changes, and checking in files) are performed in changelists.

Using changelists

After you have set up your workspace view and synced your workspace to the depot, you
can start working in Perforce. Before you can work on a file in your workspace, you must
use your Perforce client program to open the file in a changelist. A changelist consists of a
list of files, their revision numbers, the changes you have made to the files, and a
description that you supply that describes the work you performed.

Changelists serve two purposes:
* to organize your work into logical units by grouping related changes to files together

* to guarantee the integrity of your work by ensuring that related changes to files are
checked in together

If you are working on a change to some software that requires changes to three files, open
all three files in one changelist. When you check the changelist back into the depot, other
users will see your changelist linked to the changes made to all three files.

Perforce changelists are atomic change transactions; if a changelist affects three files, then
the changes for all three files are committed to the depot, or none of the changes are. Even
if the network connection between your Perforce client program and the Perforce server is
interrupted during changelist submission, the entire submit fails.

How changelist numbers work

A changelist with changes not yet submitted to the depot is a pending changelist. A
changelist containing changes that have been committed to the depot is a submitted
changelist. Each changelist has a changelist number (generated by Perforce), and a changelist
description (supplied by the user who performed the changes).

"Fixed bug, documented changes"

/depot/src/filel.c#5 edit
/depot/src/filel.h#3 edit
/depot/doc/readme. txt#1l add

When you open a file in Perforce, the file is opened in a default changelist. The default
changelist is assigned a changelist number when you check its files back into the depot.

Perforce 2011.1 Introducing Perforce 13

Working in Perforce

You can partition your work in progress into multiple pending changelists. Pending
changelists other than the default changelist are assigned numbers when you create the
changelist. (A new number may be assigned to a pending changelist when you submit the
changelist to the depot.)

Editing files

To edit a file, you check out the file in a changelist. Your Perforce client program makes
the copy of the file in your client workspace writable, and informs the Perforce server that
you have opened the file for editing.

For your changes to be available to other users, you must submit the changelist back to the
depot. After your changelist has been submitted, other users can sync their workspaces
and obtain their own copies of your changes.

Adding new files

To add a file, you create a file in your client workspace and mark the file for add in a
changelist. Your Perforce client program determines the file’s type (you can override this
file type), and informs the Perforce server that you intend to add a file.

For your new file to be available to other users, you must submit the changelist with the
added file back to the depot. After the changelist has been submitted to the depot, other
users can sync their workspaces and obtain their own copies of the new file.

Deleting files

To delete a file, you mark the file for delete in a changelist. The file is deleted from your
workspace immediately. Your Perforce client informs the server that you intend to delete
a file, but the file is not marked as deleted in the depot until you submit the changelist.

After you have submitted the changelist to the server, other users see your file marked as
deleted. Local copies of the deleted file remain in other users” workspaces until those
users sync their workspaces to the depot.

Deleted file revisions are never actually removed from the depot. You can always recover
older revisions of deleted files by syncing revisions that predate the file’s deletion into
your client workspace.

Discarding unwanted changes

You can discard any changes you made to a file in a changelist by reverting the file.
Reverting a file removes the file from its changelist and restores the copy of the file in your
client workspace to the revision last synced to your workspace.

If you revert a file opened for edit or marked for delete, whatever version of the file you
last synced is restored to your workspace. If you revert a file marked for add, the file is
removed from your changelist, but your local copy of the file remains in your client
workspace.

14

Perforce 2011.1 Introducing Perforce

Working in Perforce

Checking in files

When you are satisfied with the changes you have made to the files you opened and want
your work to be available to others, check your work back in to the depot by submitting
the changelist.

I =

1] Changelist %
1 3567 =
e

o2 E

"Fixed bug, documented changes"

depot workspace

- /depot/src/filel.c#5 edit
/depot/src/filel.h#3 edit
/depot/doc/readme.txt#1l add

There is no such thing as a partially-submitted changelist. Changelist submission is an
atomic transaction; either all of the files in a changelist are submitted successfully, or none
are.

Resolving conflicts

When two users edit the same file at the same time, their changes can conflict. If your
changes conflict with earlier changes submitted by another user, Perforce requires that
you resolve the conflicting files and re-submit the changelist. Because changelists are atomic
transactions, until you resolve the conflict, none of the changes to any of the files in your
changelist can appear in the depot.

The resolve process enables you to decide what needs to be done: should your file
overwrite the other user’s? Should your own file be thrown away in favor of the other
user’s changes? Or should the two conflicting files be merged into one file? At your
request, Perforce can perform a three-way merge between the two conflicting text files
and the file from which the two conflicting files were derived.

Theirs

Merged Submitted

Yours (resolve) Changelist
E 1003
Changelist
(default)

merge

Perforce 2011.1 Introducing Perforce 15

Working in Perforce

Working concurrently

Perforce helps teams to work concurrently. The conflict resolution and three-way merge
process enables multiple users to work on the same files at the same time without
interfering with each other’s work.

The three-way merge process for resolving file conflicts helps you to resolve conflicting
changes to text files, but is not necessarily meaningful for binary files such as graphics or
compiled code. If you are working on files where merges are not meaningful, you can lock
such files to prevent others from making changes that conflict with your work.

Perforce supports two types of file locking. You can prevent files from being checked in
with file locking and you can prevent file checkout with exclusive-open:

* To prevent other users from checking in changes to a file you are working on, lock the
file. Other users can still check out your locked file, but are unable to submit changelists
that affect your locked file until you submit your changes. (To allow users to submit
changelists that affect your locked file before you submit your work, unlock the file.)

¢ To prevent a file from being checked out by more than one user at a time, use the +1
exclusive-open filetype modifier. Files that have the +1 filetype modifier can only be
opened by one user at a time. Your Perforce administrator can use a special table called
the typemap table to automatically specify certain file types as exclusive-open.

For example, users working within an IDE that does not permit change resolution might
also want to lock the files they’re working on so they don’t have to switch to a Perforce
client program to submit their work, and users working on digital assets might want to
automatically classify all .gif or .mpg files as exclusive-open.

If you are editing Locked? Meaning
file (type) unlocked Anyone can check out £ile and submit their changes.

If a user submits changes to £ile while you have file
open, you must resolve your changes against their
changes when you submit your changelist.

file (type) locked Anyone can check out £ile, but no users can submit
changes to £ile until you submit your changes to file,
or until you remove the lock on file.

file (type+l) unlocked Only one user at a time can have £ile openina
or locked changelist. The status of the lock is irrelevant; no other
users can submit changelists involving the file because no
other users can check out the file.

For more about locking files, the exclusive-open filetype modifier, and the typemap table,
see the Command Reference and the System Administrator’s Guide.

16 Perforce 2011.1 Introducing Perforce

Working in Perforce

Comparing files

You can use Perforce to compare any two revisions of the same file, of any two files in the
depot, or of files in the depot and their corresponding copies in your workspace.

The p4 diff and p4 diff2 commands produce output similar to that of the standard diff
program included in UNIX and Linux systems. Other Perforce client programs (including
P4V) include P4Merge, which provides a graphical view of file differences. For example:

=100 x| iy PaMenge - gpartiche#7.cop and gparticleaLopp |
B L& dew Fnd peb
bpringsl Georion u b adBalag e d

a-tpart-draurld = Paliet 9 it (bonone e endeeg deferernes) | Tab spacings 4 | Encodng: System

o S=rparet=oniowlpringst v 31 [T S ————" gl e mlpweg gy gk ppit s -l
i e g]
ot - « for | GSpring* = = springs : 3 ; 3 = 3=
. " for [OSpeing® 2 = spriogs : 8 : 8 = a-) [}
3 init = b e - 2 g
L [s-spart-slidesprings(¥) :
< s T a-spar nuorld = falae: wesBemove [a-rpact) :
¢ [Eage [Trparbes Se nemova fepersl] L
4 1F ¢ lepare=dimorid init = faloe: init = erue:
i =g @ My ' '
i frag st
3
i void GParticle::Init(Glorid” v) void GParticle::lnit(Géerld® v)
{ i
for [GSPELGGT @ = springs i 8 i 8 = 8-3 for | GSPELNGT 8 = springa ; 8 ; 8 = 3=
4 L]
s->part->pos = NearBy(): if | ts-rpart->imworld)

w->Add| 3->pare 1: (
) s-spart-zpos = NearBy() ;
init = talse: w->Add(z->pact):
}
]

nt initn: init = false: =
4| | Lf_l

Reviewing change histories of individual files

The history of a file is represented by a series of file revisions, one per file. Each revision to
the file is associated with a changelist. You can compare files against the revision in your
workspace or against any of the revisions stored in the depot.

B yeratehy:1211, brue - Perforce =100x|
|4 d| >0 dBEQ0AELIEHBI.|0 |
|[aepoticevimaniamgrach/gpatice.coe =]
T2 e Troo B 2 || Fetny 4.3
|ECEX: x| [Meviion | Cnargeiat | Dste Submited | Submited by Fletype | Desciption
G a|| B B perideinaniangahipanchs cop
[=E
S Clder zn: [CETET]
% Bman g. bl AN aien ot
b L
w3 doxt L P e |
(i
=g Poevision: ek e manianga o Il copl]
i dlmlm' Diste sbrritiedt | 4157003 15.37.07 Changebit 730
) graricle cop K173 dinsds Submtedby. gune Pualonce Hebge: 1
B ek h 8375 ety Action. et Fle e AKD
L ot Descrption:
Ly o
|98 Ot | s workipace 2 Ties | Ponng | 3 Wy [10 serchen |) Stmited | 3 Users | i) Waskapoces | (50 [o] =
(3 e
M fladog L - /edapet/davranangiaphfarrgragh dn =l
o kg L 4 el davrin g farngragh vepicy
ol chiegad -+ subrrited 4, 0 101 Hspotid/main/ja,
P ek L - gt rasin s s oAk c20 =

This P4V screenshot shows that the depot holds three revisions of the file
//depot/dev/main/jamgraph/gparticle.cpp. The most recent revision, #3, was
submitted in changelist 720.

Perforce 2011.1 Introducing Perforce 17

Codeline Management

Reviewing change histories of groups of files

The history of a directory is represented by a series of changelists. Directories do not have
individual revision numbers; rather, every changelist that includes at least one file is
considered to be part of a directory’s history.

B] scratchy:1211, brune - Perforce =100 x|
Fle Edt View Connection Tooks Window Hel
LaldsdsodBBACAIPLAEFTI. |0
|[raepatrdevimaniomgrach =,
T8 Depet Tree Gl | Folder Histoy =]
FEE =] | Rerition (Charmgelt) Date Sutertved Subentted By Desciptan -
=T | [T VNG54 qam 21 prrgpogh enge o e R
L[S dept s VUG 134530 quen Moo chergns b new denvskaprren ko rmamine. Irbeg
Cldev Eraz NA2Z0M 113350 qurm Teat st
Cman @ /2272004 170 s Craated bin dinsctory undss main devsloprnent ok Dslete
i @@ VNN ZE quen P copy of GutaZ diin Jamgrachis bin desciony. |
- (i doce el AR qum A Few g fves 2nd & ew new options. lun Temigach 41"
1 Gian AT ARPAM BN ien e et tharal |
- T, | O | |
- images
w et P gl e ey (2763
:J. aoatichs cop N/ <le Diabe submittedt: 1721/ 200% 141948 Changebe 722
10 pouiicieh 2372 chests 5 b e
B gowcton cpp 1 chaads
B gvectoch i1 sie Dseription A parrgp g g of parn e
a1 B { J_I
78 Ot [5 Workapoce 2 Fer | A Pondng | 9 betons [[Branches | @) Subited | Urens |) Woksosces | (0 <[] =
Lo
b fielog L i /depoudev/man/ameaghyismgsech. th =
et fishog L 4 /et rnain atogr s arregtsch, vepiey
A changes -5 submmted L = 10 Dldepobdev oy,
e fislog L i Fidepot!dewmainfama aphu/oparticle. cop. EI
4Fdepotidey/man/pemngh [.4

This P4V screenshot shows that the most recent changelist that affected at least one file in
//depot/dev/main/jamgraph was changelist #768.

Perforce syntax and the status bar

Perforce has forms of syntax for referring to a file as it exists in the depot upon submission
of a numbered changelist, as tagged by a mnemonic label, or as of certain dates and times.
These forms of syntax (echangelist, @labelname, Or @date, Of #start, end) are typically
used only with the command line client, but they also appear in the status window of
graphical client programs. See the P4 User’s Guide for more details.

Codeline Management

Codelines are sets of related files that evolve together. To structure groups of related files
by purpose, such as a new product or release, you create branches. To propagate changes
between branches, you integrate changelists. To create a snapshot of files in a specific
state, you can create a label, or refer to the files collectively by specifying a date or a
changelist number.

Note | Don't confuse Perforce branches with branch mappings, which are
specifications that define the relationship between two branches.

18

Perforce 2011.1 Introducing Perforce

Codeline Management

Branching Basics

Branching is a method of managing changes between two or more sets of related files.
Perforce’s Inter-File Branching mechanism enables you to copy any set of files to a new
location in the depot by allowing changes made to one set of files to be copied, or
integrated, to the other. The new file set (or codeline) evolves separately from the original
files, but changes in either codeline can be propagated to the other by means of integration.

Most software configuration management systems support some form of branching;
Perforce’s mechanism is unique because it mimics the style in which users create their
own file copies when no branching mechanism is available.

Suppose for a moment that you're writing a program

and are not using an SCM system. You're ready to E [::z[:;::ce e L V'j
release your program: what do you do with your =

code? Chances are that you’'d copy all your files to a &.05) depot

new location. One of your file sets becomes your oD dev

release codeline, and bug fixes to the release are Dlmain

made to that file set; your other files are your
development file set, and new functionality to the
code is added to these files..

i [newfeatures
=D releass
e

{ m-@ez
Perforce organizes files in the depot using directory = Djamgraph
hierarchies, like a large hard drive. When you make & @0
a new codeline, it appears in the depot as a 78 Dot | B orkspace |

subdirectory, such as //depot/dev/main/jam for
ongoing development work, //depot/release/jam/2.1 for release 2.1, and
//depot/release/jam/2 .2 for release 2.2.

Creating a codeline

To create a codeline or development branch, decide which files belong in the branch (the
source files), and integrate those files into the new codeline to create the target files. The
Perforce server “opens the target files for branch/sync” in a changelist.

Opening files for branch/sync is just like opening them for add, edit, or delete; the files
are opened in a changelist, and your client workspace view must include the target files.
Similarly, no changes are made to the depot until you submit the changelist. The atomic
nature of changelists ensures that when you create a codeline, it contains all of the files
you branched.

Without an SCM system, you might create a branch by copying the files from one
directory into another directory. The advantage of integration over copying the files and
adding the copies to the depot in a new directory is that when you integrate files from one
codeline to another, Perforce can track the connections between related files in an

Perforce 2011.1 Introducing Perforce 19

Codeline Management

integration record, facilitating easy tracking and propagation of changes between the two
sets of files.

Integration also enables Perforce to perform a “lazy copy” of the files. When you branch
files, the server does not actually hold two copies of the files - it merely holds the source
file and a pointer in the database records the fact that the branch to the target file has
occurred. Lazy copies make branching a low-overhead operation; the server doesn’t have
to keep track of duplicate copies of files.

//depot/main integrate //depot/rell.0.
>
O O 0 O
O O O O
O/l O/l O /|| O /||
OOoOCO0O @O0/ s/ OO0 OO0 s/
source target
//depot/rell.0/. ..
//depot/main/. ..

To integrate files from a source codeline to a target codeline:

the target must be in your client workspace view

the source doesn’t have to be in your client workspace view (although you must have
permission to read the source files)

you open files for branch in a new changelist by integrating them
you create files in the new codeline by submitting the changelist

when you submit the changelist with the target files, the target files in the new codeline
are at revision #1

20

Perforce 2011.1 Introducing Perforce

Codeline Management

¢ integration records enable you to examine the history of files in the new codeline,
including the fact that they were created by means of integration from the source files.

Propagating changes between codelines

You can use integration to propagate changes between related codelines in much the same
way you create codelines. (Creating a codeline is equivalent to propagating a set of
changes that make up the entirety of the source files into an empty set of target files.)

When you create a codeline, the target files are by definition empty; there is no possibility
your changes can conflict. When you propagate changes between existing codelines,
conflicts can arise because conflicting changes may have been made in both the source
and the target codelines.

//depot/rell.0/...
Changelist
Changelist el
3582

Changelist
3574

//depot/main/. ..
Changelist Changelist Changelist
3567 3575 3590

In the example shown, the rel1.0 codeline was created by branching source files from
//depot /main into a target of //depot/rell. 0 in changelist 3567. Changelists 3574, 3582
and 3601 represent work performed in the release branch, and changelists 3575 and 3590
represent work performed in the main line.

In order to propagate work done in the release branch back into the main line, you
integrate from source files in //depot/rell.0 into //depot/main, resolving any
conflicting changes between work done in the release branch and work done in the main
line.

Perforce 2011.1 Introducing Perforce 21

Codeline Management

Resolving differences between codelines

When you integrate changelists from a source codeline to an existing target codeline,
Perforce schedules a resolve, or a three-way merge, between the files.

The revisions in the target files in your client workspace are referred to as yours. The
revisions of the source files in the depot are referred to as theirs. Where changes between
these files do not conflict, the changes can be merged automatically. Where changes
conflict, you must choose which changes are to be accepted into the file.

Because changelists are atomic, you must resolve every file in a changelist before the
submit can succeed. You can resolve these situations in one of three ways:

¢ Automatically: In many cases, you will know whether you want to accept the changes
that are “yours” (that is, the target revisions in your client workspace) or “theirs” (that
is, the source revisions in the depot). Whether you accept “yours” or “theirs”, this type
of resolve is referred to as an automatic resolve without merging.

* Accept merged: Sometimes, there are changes made to the files that are “theirs” and
“yours” do not conflict. In these cases, Perforce merges the two files and provides you
with an option to accept the merged result. Such a resolve is referred to as a “safe”
automatic resolve with merging.

* Manual merge: Finally, there may be cases where the same lines in “theirs” and “yours”
have been changed. Such lines are said to conflict. When changes conflict, Perforce
resolves as many differences as possible and produces a merged file containing conflict
markers for manual resolution. You must either edit the merged file manually before
submitting it, or accept the merged file with the conflict markers included, and fix the
conflict in a subsequent changelist.

Duplicating complex branch structures

Perforce provides two mechanisms for branching: integrating using a file specification, and
integrating using a branch mapping.

For simple branch structures, you can manually specify the paths of the source and target
files, and integrate your source files to the target branch using file specifications. You
must manually specify the source and target codelines every time you branch with a file
specification.

For more complex branch structures, you can set up branch mappings that enable you to
reliably duplicate even the most complex branch structures. A branch mapping holds a set
of mapping rules (a branch view) that controls how files in the source branch are integrated
in the target branch. After you have set up a branch mapping, you can perform the
integration by using the branch mapping to perform all of the integrations specified in the
branch view.

22

Perforce 2011.1 Introducing Perforce

Codeline Management

For example, the branch mapping in
the screenshot shows three mappings:.

1. amapping of all files in
//depot/dev/main/jamgraph
into
//depot/release/jamgraph/1.0
directory

2. an exclusionary mapping to
ensure that test work in
/jamgraph/test is not copied
from the main line

3. amapping to include a DLL
(glut32.d11) deliverable located
in a common /bin build directory
unrelated to the jamgraph project.

H Branch; jamgraph-1.0-dev Zrebease (scrabohy:1211, bruno)

Brareh iamaraph 1 0 devthieleons

Updsie: 1/20/2005 07:2259
Aooese 1721/200511:09.39
Oweer qunn

Dizcripfon Cresbed Ly qunn

Oport I pocked

View, 107

| Quest/,.,
A 1birdghat 32 1

Tracking change history between codelines

The Revision Graph feature of P4V is a convenient way of visualizing a file’s history
across (and between) branches.

B Revision Graph - //thepotrelease; jamgraph/ 1.0/ gparticle.cop (scratchy:1 211, brum) =0l
ENAEY et A AP T
711 712 720 746 767 =
._f
:-'-’:e;)'rce';.'n!"-':a'.-'::.'|3v~:',;-\rq[e:lc|:C)D
@EE;
#idepot/devimaindamgaph/opaiticle coo
\1
depkvimamearmga aph1. 0/ oestate.cop |
il L'—I
Detsis | Invograions. | Ll | Preview | Naviosir | Logend |
Fiévisioee //depctivelence/iamaraphs1, O/aparticle. copit] amp ‘_]
L J !
Fie [Ao [rewn | Add Edt Diletn Merge
= Genrces [conabuting content bo this sevition] ‘\ =
= [ety ke o ME bnemhbhon .| [l
Branch Mergs wi Lt
1 =
Copy lgrere

Adepolielessefamp a1 IVgpalcle ol

The example screenshot shows a simple revision graph. The changes to the file
represented by revision #1 through revision #3 were integrated from the main codeline
(//depot/dev/main/. . .) into a release branch (//depot /release/jamgraph/1.0/...)
and into a development branch (//depot/dev/newfeatures. . .).

Perforce 2011.1 Introducing Perforce

23

Codeline Management

Using Streams

Perforce streams are structured containers for the files that compose projects, codelines,
and components. The Perforce command line client and P4V, the Perforce Visual Client,
provides extensive support for streams. For detailed information about working with
streams, refer to the Perforce Command Reference, p4 command line help, and P4V online
help.

Streams confer the following benefits:

Ensures a hierarchical approach to branching

Provides an “out of the box” best-practice branching strategy

Embeds metadata about the branch hierarchy in the Perforce Server

Provides a standard approach to structuring code (stability and hierarchy)
Automates the generation of client workspace views and branch views

Offers a compelling and informative visualization of stream structure and status
Enables you to organize and visualize (bodies of) code.

Provides rules to make development easier.

Streams solve the following problems:

You can’t name a branch: Branches are collections of paths. You can name a branch
specification, true, but a branch specification lacks parentage and stability. It’s hard to
create branch views, easy to define streams.

You can’t define a good branching structure without external tools: Perforce, out of the box,
permits you to do anything you want. Small installations can get away with a lot, but
enterprise- level customers want and need disciplines and best practices that match
their business and technical processes. Streams ensure hierarchical branching and
minimize pathological relationships between branches.

Change is propagated inefficiently: Using well-defined streams, customers can branch only
the files that are going to change and can ensure that a meaningful integration history is
created.

Change is propagated incorrectly: By default, you can integrate files without restriction.
Streams ensure that change flows along a predefined hierarchy and that merging and
resolving happen appropriately.

Streams don’t guarantee efficiency and certitude, but a well-formed hierarchy controls
what gets branched and can ensure that change flows correctly.

24

Perforce 2011.1 Introducing Perforce

Codeline Management

To work with streams, you perform the following steps:
1. Create a stream depot

2. Create and populate a mainline stream

3. Branch development and release streams

4. Merge and copy changes

To manage streams, you (mainly) use the following commands
® p4 stream

® p4 streams

e p4 merge

® p4 copy

e p4 resolve

e p4 cstat

e p4 istat

Additional commands that accept stream arguments are as follows:
e p4 branch

e p4 client

e p4 clients

e pa diff2

e p4 dirs

e p4 integrate

e p4 interchanges

For details about command syntax and flags, refer to the Perforce Command Reference or use
the p4 help commandname command. For a brief overview, use the p4 help streamintro
command. The following sections describe streams-related tasks in detail.

Setting up the structure

First you create a stream depot. Stream depots are identical to local depots except for the
following:

¢ Flow is controlled by the stream specification (although manual integrations can use
branch views that were generated when streams are defined or edited).

¢ Streams accept submissions only from stream-associated workspaces.

¢ Imported files can be synced and edited but not submitted You can integrate files
between stream and local depots.

Perforce 2011.1 Introducing Perforce 25

Codeline Management

Next, for each stream in the branching hierarchy that you want to create, you define a
stream specification that specifies the stream name, the parent stream and the stream
type. By default, a stream inherits its file structure and contents from its parent. To meet
more advanced requirements, you can specify mappings that redefine the file paths that a
stream contains by defining path mappings. The following sections explain stream types
and views.

Stream types

To indicate the relative stability of the stream, you assign its type. Stream types are as
follows:

® mainline: A stream with no parent. Expects merging down from more stable streams.
Expects copying up from less stable streams. Used as the stable trunk of a stream
system.

® release: A stream that is more stable than its parent. Expects merging down from more
stable child streams. Does not expect copying up from its parent stream. Useful for
ongoing stabilization, bug fixing and release maintenance.

® development: A stream that is less stable than its parent. Expects merging down from
its parent stream. Expects copying up from its less stable child streams. Does not expect
to have more stable child streams. Useful for long-term projects, major new features.

To update a stream from a more stable parent or child stream, you merge. After the less
stable stream is up to date, you copy its changes to the more stable stream. In a nutshell:
merge down, copy up.

Stream views

To configure the files that a stream contains, you define the stream view. The view is
composed of a set of paths to which you assign types that control their characteristics, as
follows:

® share: (default) Files in shared paths are syncable, submittable, and integratable.
Shared paths are used for files whose changes will flow to and from other streams.

® isolate: Files can be edited but the resulting changes cannot be integrated to other
streams. Isolated paths are useful for storing nightly builds and other generated files.

* import: Files are sourced from a specified location, but cannot be edited or integrated.
Use imported paths for components such as third-party libraries that must be present in
the stream but are not worked on. An imported path inherits its view from the parent
stream unless its depot location is defined explicitly.

¢ exclude: Prevents files in the parent stream from becoming part of the child stream.
Files in excluded paths can't be synced, submitted, or integrated.

26

Perforce 2011.1 Introducing Perforce

Codeline Management

To

When you specify the paths, omit the leading depot and stream name from the target path
on the right side of the view (unless you are remapping an imported path). For example:
//AlphaTest/main/doc/. .. doc/. ..

When in doubt, use “Development”.

Example: A build stream might have mappings like this:

share ...

import relbin/... //Ace/REL2.1/bin/. ..
import gt4/... //import/Qt4.0/...
import jam/... //depot/main/jam/src/. ..

...because it needs access to source code and libraries, but will never check changes into
those paths. Note that the import paths remap the location of the imported files.

Populating the streams

After defining the mainline stream, you can populate it by adding files or integrating files,
then copying them to less stable child streams and merging them to more stable parents.

Propagating change

Typically you define and populate the mainline first, then create development streams
below the mainline. You keep development streams up to date by merging from the
mainline. When the development work is stable, you copy it to main. When it’s time to
prepare for a release, you can create a release stream in which you stabilize the release,
then create a development stream as a child of the release stream where bugs can be fixed.

learn more about branching

Although Perforce’s branching mechanism is relatively simple, the theory of branching
can be very complex. When should a branch be created? At what point should code
changes be propagated from one codeline to another? Who is responsible for performing
merges? These questions are common to every SCM system, and the answers are not
simple.

A white paper on Inter-File Branching that describes best practices for the use of Perforce’s
branching mechanism, as well as technical details, is available from:

http://www.perforce.com/customers/white papers/interfile branching

Perforce 2011.1 Introducing Perforce 27

http://www.perforce.com/customers/white_papers/interfile_branching

Next steps

Next steps

Work and defect tracking

Perforce includes a basic defect tracking system called jobs. A Perforce job is a description
of work to be done, such as a bug fix or a change request. Perforce’s job tracking
mechanism enables you to link one or more jobs to the changelists that implement the
work specified in the jobs. Associating jobs with changelists helps teams know if and
when work was completed, who performed the work, and what file revisions were
affected by the work. Jobs linked to changelists are marked as closed when the changelist
is submitted.

The types of information tracked by the jobs system can be customized; Perforce
administrators can add, change, or delete fields used by Perforce jobs. See the System
Administrator’s Guide for details.

Perforce currently offers two independent platforms to integrate Perforce with third-party
defect tracking and workflow systems. Both platforms allow information to be shared
between Perforce’s job system and external defect tracking systems.

P4DTG, the Perforce Defect Tracking Gateway, is an integrated platform that includes
both a graphical configuration editor and a replication engine. For more information, see:

http://www.perforce.com/product/components/defect tracking gateway

Tagging files with labels

Perforce labels are sets of tagged file revisions, enabling you to reproduce specific groups
of files within client workspaces. Labels differ from changelists in that a changelist
number represents the state of all files in the depot at the time the changelist was
submitted. Labels are used to tag arbitrary groups of files, even when those file revisions
represent work that was submitted in more than one changelist.

Another difference between changelists and labels is that changelists are referred to by
Perforce-assigned numbers, while labels take names chosen by users. For example, you
might want to tag the file revisions that compose a particular release with the label
rel2.1. At alater time, you can update the revisions tagged with rel2.1 to reflect fixes
performed in subsequent changelists, and retrieve all the tagged revisions into a client
workspace by syncing the workspace to the label.

For more about labels, see the P4 User’s Guide.

Editors and merge tools

Most Perforce client programs have options that enable you to specify a preferred text
editor or merge tool. For example, the Command Line Client uses the environment
variables P4EDITOR and P4MERGE to invoke a preferred editor or merge tool.

28

Perforce 2011.1 Introducing Perforce

http://www.perforce.com/product/components/defect_tracking_gateway

Next steps

See the documentation for your particular Perforce client program for details.

Protections and permissions

Perforce provides a protection scheme to prevent unauthorized or inadvertent access to
the depot. The protections determine which Perforce commands can be run, on which
files, by whom, and from which client workstations. Perforce administrators can set
protections by using the p4 protect command in the Perforce Command-Line Client, or
by using P4Admin, the Perforce Administration Tool.

For further information, see the System Administrator’s Guide.

Users and licenses

Perforce servers are licensed according to how many users they support. This licensing
information resides in a file called 1icense in the server root directory. The 1icense file is
a plain text file supplied by Perforce Software. Without the 1icense file, the Perforce
server limits itself to two users and five client workspaces.

For further information, see the System Administrator’s Guide, or contact technical support.

Where to learn more about Perforce
To obtain online help from within all Perforce client programs:
® Use the help menu from within graphical Perforce client programs
* Type p4 help from the command line for help with the Command-Line Client

Documentation for Perforce is available on the web at:
http://www.perforce.com/perforce/technical .html

The Perforce Knowledge Base; a complete list of articles is available at:
http://kb.perforce.com/Technotes

Perforce also offers training, consulting, and other professional services. For details, see:
http://www.perforce.com/services/perforce professional services

The Perforce Forums are a place for users to ask questions and to hear from other users:
http://forums.perforce.com/

The perforce-user mailing list is mirrored on the Perforce Forums:
http://maillist.perforce.com/mailman/listinfo/perforce-user

Perforce support personnel are also available for email and telephone support.
http://www.perforce.com/technical support/contact support

Perforce 2011.1 Introducing Perforce 29

http://www.perforce.com/perforce/technical.html
http://www.perforce.com/technical_support/contact_support
http://kb.perforce.com/Technotes
http://www.perforce.com/services/perforce_professional_services
http://maillist.perforce.com/mailman/listinfo/perforce-user
http://www.perforce.com/technical_support/contact_support
http://forums.perforce.com/
http://www.perforce.com/services/instructorled_training/instructorled_training_overview

Next steps

30 Perforce 2011.1 Introducing Perforce

	Table of Contents
	Introducing Perforce
	How Perforce Works
	The Perforce Server
	Perforce client programs

	Working in Perforce
	Getting files from the server
	Referring to files in Perforce
	Working with files

	Codeline Management
	Branching Basics
	Creating a codeline
	Propagating changes between codelines
	Resolving differences between codelines
	Duplicating complex branch structures
	Tracking change history between codelines
	Using Streams
	To learn more about branching

	Next steps
	Work and defect tracking
	Tagging files with labels
	Editors and merge tools
	Protections and permissions
	Users and licenses
	Where to learn more about Perforce

